

LoCAL Deliverable 1.4

Baseline data from Barredo

WP number WP 1

Partner uoG
responsible

Low-Carbon After-Life (LoCAL): sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure environmental risks

Deliverable 1.4

Baseline data from Barredo

The follow data was initially proposed for month 18. The sampling schedule was delayed to allow for a syncronised programme across all European partner sites (UK and Bytom). A 12 month sampling regime will be carried out across all project sites. The following table represents analysis from the first 6 months of sampling at Barredo, Spain.

Abbreviation:	Name:	Description:
SP1	Sampling point Nº1	Water from pump at 100m depth
SP2	Sampling point №2	Water from pump at 200m depth
SP3	Sampling point Nº3	Water at the exit of the shell and tube heat exchanger (Hospital)
SP4	Sampling point Nº4	Water at the exit of the plate heat exchanger (University)
SP5	Sampling point Nº5	Water at the entrance of the plate heat exchanger (University)

Key for Barredo system sampling site locations for chemical analyses.

Low-Carbon After-Life (LoCAL): sustainable use of flooded coal mine voids

as a thermal energy source - a baseline activity for minimising post-closure Research & Innovation environmental risks Research Fund for Coal and Steel

			Bar	redo			
			SP1 A	SP2 B	SP3 H	SP4 I	SP5 J
	No rest	T [ºC]	22.6	23.3	19.5	19.14	22.9
		ORP (mV) Eh	13.4	15.3	7.3	11.1	16.4
e Pe		Ph	6.31	6.17	6.47	6.37	6.38
	min rest	Dissolved oxygen [ppm] [mg/L]	2.21	2.43	1.63	0.08	2.03
Σ	After 5	Electrical conductivity [µS/cm]	2886	2943	2875	2888	2832
		TDS	1443	1545	1438	1444	1416
		Salinity	1.5	1.61	1.5	1.51	1.47

Barredo field physiochemistry for 19/01/2015 campaign.

Research Fund for Coal and Steel

Low-Carbon After-Life (LoCAL): sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure environmental risks

			Barr	edo			
				B 200 (SP2)	sp3 H	SP4 I	SP5 J
	red	Mn (ppb)	317	299	309	324	315
	Filtered samples	Fe (ppb)	1896	2631	1819	2339	1922
	ered	Mn [mg/L]	0.4	0.3	0.4	0.4	0.4
	Unfiltered samples	Fe [mg/L]	3.1	3.3	2.9	5	23
		Li ⁺	0.15	0.16	0.15	0.16	0.16
		Na⁺	534.43	583.46	539.99	541.96	542.73
	Major anions and cations [mg/L]	NH₄⁺	0	0	0	0	0
		K*	7.93	7.30	7.28	7.41	7.22
ξ		Ca ⁺²	123.12	117.23	124.36	124.34	123.76
Lab measuments (Spain)		Mg⁺²	63.27	62.13	64.19	63.80	63.51
easum (Spain)	Ö	F ⁻	0.77	0.78	0.79	0.76	0.79
9E (S)	Ë	CL.	16.17	16.52	16.18	16.19	16.20
윤	suo	NO-s	0	0	0	0	0
_	ani	Br [*]	0	0	0	2.23	0
	jor	NO ⁻³	0	0	0	0	0
	Z.	PO₄ ⁻³	0	0	0	0	0
		SO ₄ -2	685.74	721.99	686.29	689.10	689.28
		TC [mg/L]	240.65	232.75	238.90	232.20	230.45
		IC [mg/L]	230.55	222.20	230.25	223.20	223.70
	T	OC [mg/L]	10.10	10.57	8.68	8.99	6.73
	CARB(DNATES [mg/L]	0	0	0	0	0
	BICARE	BONATES [mg/L]	1158.76	1218.10	1153.17	1159.68	1155.23
	ALKA	ALINITY [mg/L]	1158.76	1218.10	1153.17	1159.68	1155.23

Barredo lab measurements for 19/01/2015 campaign.

				Barredo			River Turón (close to source)	Mariana F	SP3 H	SP4 I	SP5 J	River Turón (close to
			100 (SP1) A	200 (SP2) B	4 Pumps ON C	Figaredo D	E	Ividilalia I	3/3/1	3141	3733	Figaredo) K
	No rest	T [ºC]	22.93	23.1	22.97	22.2	13	14.75	24.9	22.85	22.81	19
		ORP (mV) Eh	-44.9	-39.8	-51.2	-49.4	10	13.01	-62.2	-58.6	-52	24
þe		Ph	8.02	8.01	8.36	8.13	8.19	8.16	7.96	8.07	8.36	8.06
Multiprobe	min rest	Dissolved oxygen [ppm] [mg/L]	1.52	1.52	2.26	2.92	4.08	3.92	2.05	0.39	2.68	5.33
Σ	After 5	Electrical conductivity [μS/cm]	2419	2415	2436	2354	528	1118	2450	2415	2417	1246
		TDS	1210	1207	1218	1177	264	559	1225	1207	1209	623
		Salinity	1.24	1.24	1.25	1.21	0.26	0.56	1.26	1.24	1.24	0.63
test		Alkalinity [mmol/l]	17.4	24.9	17.6	16.8	5.2	7.7	17.7	18.8	17.6	8.6
Alkaninity test		Alkalinity [mgl/l]	1061.4	1518.9	1073.6	1024.8	317.2	469.7	1079.7	1146.8	1073.6	524.6
Sulfide	test	Sulfides [mg/L]	0.1	0.1	0	0.1	0	0	0.1	0.1	0	0

Barredo field physiochemistry for 24/06/2015 campaign.

LOW Carbon After Life: sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure environmental risks Research Fund for Coal & Steel

				Barredo								River Turón
			A 100 (SP1)	B 200 (SP2)	C 4 Pumps ON	Figaredo D	River Turón E	Mariana F	SP3 H	SP4	SP5 J	(close to Figaredo) K
	red	Mn (ppb)	437.1	423.3	433.5	598.1	0.3	37.2	434.2	457.7	438.4	281.2
	Filtered samples	Fe (ppb)	5058.1	4429.2	4059.1	4520.2	<0.60	133.4	4389.7	4659.4	4538.6	2106.2
	ered oles	Mn (mg/L)	0.5	0.7	0.5	0.6	0	0	0.5	0.5	0.5	0.3
	Unfiltered samples	Fe [mg/L]	1.1	4.3	3.3	3.1	0.1	0	2.9	4	3.3	0.1
		Li*	-	0.14	0.14	-	-	-	0.15	0.17	0.14	-
		Na*	393.37	423.80	404.95	366.44	27.67	42.73	409.96	517.38	421.75	75.37
	<u>[</u>	NH₄⁺	1	•	•	•	0.61	-	-	-	-	0.91
	anions and cations [mg/L]	K*	6.68	6.79	6.79	6.27	2.89	3.11	8.81	7.86	7.26	5.02
ξ.		Ca ⁺²	144.25	129.86	144.09	152.75	65.51	155.76	156.38	143.78	138.09	131.49
e (Mg ⁺²	68.96	68.77	72.97	70.76	17.61	45.21	72.34	63.20	71.81	59.83
Lab measuments (Spain)	ö	F"	0.42	0.53	0.64	0.44	0.13	0.12	1.09	0.29	0.43	0.23
ම ල ල	Ë	CL.	13.31	13.13	13.54	13.88	6.26	8.19	15.40	14.72	15.39	22.43
<u>.</u>	S.	NO ⁻²	-	-	-	-	-	3.69	-	-	-	-
- E	nie Sie	Br*	-	-	-	-	-	-	-	-	-	-
	5	NO ⁻³	-	-	-	-	3.10	1.03	0.62	-	0.36	3.58
	Major	PO ₄ -3	-	-	-	-	0.18	-	-	-	-	-
		SO ₄ -2	657.08	665.91	661.86	646.29	66.26	280.76	696.11	653.70	662.43	631.35
		TC [mg/L]	193.7	181.2	184.6	186.8	54.7	88.8	197.2	190.1	125.7	70.4
		IC [mg/L]	191.7	180.8	184.1	185.6	50.1	85.8	193.5	189.5	123.3	66.3
	Т	OC [mg/L]	2.0	0.4	0.5	1.2	4.5	3.0	3.7	0.6	2.3	4.1
	CARBONATES [mg/L]		-	-	-	-	-	-	-	-	-	-
	BICARE	BONATES[mg/L]	969.70	972.34	963.09	941.69	259.34	414.46	970.28	972.90	962.95	472.86
	ALKALINITY [mg/L]		969.70	972.34	963.09	941.69	259.34	414.46	970.28	972.90	962.95	472.86

Barredo lab measurements for 24/06/2015 campaign.

LOW Carbon After Life: sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure enviromental risks

Research Fund for Coal & Steel

				Codt & Steet									
					Barredo		Figaredo D	River Turón (close to source)	Mariana F	SP3 H	SP4 I	SP5 J	River Turón (close to
				100 (SP1) A	200 (SP2) B	4 Pumps ON C		E		3.5.1			Figaredo) K
	_:	T [ºC]		22.03	23.06	21.69	21.46	14.79	14.6			18.46	
		ORP (mV)	Eh	-36.4	-40.52	-32.16	-46.2	52.5	3.21				53.5
9	2	Ph		8.4	8.19	7.95	7.64	8.31	7.76				8.15
Multiprobe		Dissolved oxy		3.21	2.97	3.46	3.06	6.98	4.51				6.02
Σ		Electrical condu [μS/cm]		2300	2348	2315	2300	469	1125	Intalación para	da, no se tomo m	uestra debido a	1649
		TDS		1150	1174	1157	1150	235	562	-	vaba estancada ce que no es represe		824
		Salinity		1.18	1.21	1.19	1.18	0.23	0.56				0.84
	y test	Alkalinity [mmol/l]		16.8	16.1	16.2	16.7	4.3	7.6				
	Alkaninity test	Alkalinity [mgl/l]	•	1024.8	982.1	988.2	1018.7	262.3	463.6				671
Sulfide	test	Sulfides [mg	g/L]	0	0	0	0.1	0	0				0

Barredo field physiochemistry for 01/09/2015 campaign.

LOW Carbon After Life: sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure environmental risks

Research Fund for Coal & Steel

								Coal &	J.C.C.			
				Barredo								River Turón
				B 200 (SP2)	C 4 Pumps ON	Figaredo D	River Turón E	Mariana F	sp3 H	SP4 I	SP5 J	(close to Figaredo) K
	red	Mn (ppb)	0.5	0.4	0.5	0.6	0.0	0.0				0.3
	Filtered samples	Fe (ppb)	3.7	3.4	3.4	2.6	0.0	0.7				0.1
	red	Mn (mg/L)	0.6	0.5	0.6	0.7	0.3	0.1				0.5
	Unfiltered samples	Fe [mg/L]	4.7	3.9	19	3.7	0	2.6				2.5
		Li ⁺	0.10	0.14	0.13	0.12	-	-				-
		Na*	391.91	403.51	395.90	412.93	31.28	40.33				205.78
	<u>[7</u>	NH₄*	-		-	,	0.79	-				-
	Major anions and cations [mg/L]	K*	7.22	7.57	7.49	6.67	3.79	3.36				7.18
5		Ca ⁺²	138.17	141.63	144.25	140.80	56.63	155.20				117.97
ы <u> </u>		Mg ⁺²	68.43	73.09	71.42	67.16	14.43	46.01				54.20
ai sur		F ⁻	0.40	0.48	0.44	0.47	0.14	0.14				0.23
Lab measuments (Spain)	ä	CL.	12.92	13.42	13.05	14.57	10.36	9.20				9.57
<u> </u>	S.C.	NO⁻²	-	-	-	-	-	-				-
<u> </u>	jë.	Br*	-	0.53	-	-	-	-				-
	5	NO ⁻³	-	-	-	-	1.77	1.12				1.35
	Maj	PO₄⁻³	-	-	-	-	-	-				-
		SO₄⁻²	598.60	634.46	620.51	607.49	50.57	267.62				385.21
		TC [mg/L]	196.50	189.90	198.70	194.30	54.70	91.84				123.50
		IC [mg/L]	193.30	185.55	195.45	189.10	47.37	87.43				119.65
	T	OC [mg/L]	3.20	4.35	3.25	5.20	7.33	4.41				3.85
	CARBONATES [mg/L]		-	-	-	-	-	-				-
	BICARBONATES [mg/L]		961.37	976.04	970.46	996.63	245.27	440.60				654.85
	ALKA	ALINITY [mg/L]	961.37	976.04	970.46	996.63	245.27	440.60				654.85

Barredo lab measurements for 01/09/2015 campaign.

as a thermal energy source - a baseline activity for minimising post-closure enviromental risks Research Fund for

Coal & Steel

Water origin	Sampling name	Description	Considerations		
Mine water	Α	Pump place at circa 100 m depth			
from Barredo	В	Pump place at circa 200 m depth			
shaft	С	The four pumps working at the same time (3pumps 100m depth+1pump 200m depth)	Some times it is not posible to sample under this conditions		
Mine water from Figaredo shaft	D	Pump placed at circa 100m depth	(Barredo and Figaredo have hydraulic conexions) Figaredo wellhead is placed in an upper horizon than Barredo, so in dry periods can occur that there is not enoth water for pump Figaredo		
Mariana adit	F	Not pumped, sample taken directly from the adit	Before it was connected with Barredo, now the conection has been sealed		
Turon river	E	Sample taken close to the source of the river	Turon river infiltrates in Figaredo workings		
Turon niver	K	Sample taken after downstream to Figaredo workings	Taton tive minuaces in Figuredo workings		
Rainwater Ovie	edo	Taken directly from the roof of the Mines School	A picture of the homemade vessel to the water collection can be seen at the right hand		

Key for Barredo system sampling site locations for isotopic analyses.

Research Fund for Coal and Steel

Low-Carbon After-Life (LoCAL): sustainable use of flooded coal mine voids as a thermal energy source - a baseline activity for minimising post-closure environmental risks

Depositation	Comple	s180 /n/ \ s20	(0/)
Description	Sample	δ ¹⁸ O _{VSMOW} (‰) δ ² D _{VSI}	
Rainwater Oviedo	Jul 15 (1) Jul 15 (2)	-1.9 -1.9	-11
ainwater		-2.0	-12 -13.6
- <u>a</u> O	aug 15 Nov-15		
		-2.5	-19
-	A (1)	-7.4 -7.4	-45 -43
-	A (2)	-7.4 -7.4	-43 -43
-	B (1) B (2)	-7.4 -7.4	-45 -45
-	C (1)	-7.4 -7.6	-45 -46
-	C (1)	-7.3	-45
<u>v</u>	D (1)	-7.4	-47
Jun-15	D (1)	-7.6	-46
. 7	E (1)	-7.6	-45
-	E (2)	-7.8	-43
-	F (1)	-7.2	-43
-	F (2)	-7.2	-42
-	K (1)	-7.5	-46
-	K (2)	-7.3	-43
	A (1)	-7.2	-45
-	A (2)	-7.0	-43
-	B (1)	-7.4	-45
-	B (2)	-7.3	-45
-	C (1)	-7.3	-46
-	C (2)	-7.5	-46
Sep-15	D (1)	-7.5	-48
ė,	D (2)	-7.6	-48
. 0,	E (1)	-7.2	-42
	E (2)	-7.1	-41
	F (1)	-7.0	-43
	F (2)	-7.3	-42
	K (1)	-7.7	-46
	K (2)	-7.6	-45
	A (1)	-7.3	-47
1	A (2)	-7.3	-46
	B (1)	-7.5	-47
]	B (2)	-7.3	-46
Nov-15	E (1)	-7.5	-44
Š	E (2)	-7.5	-44
]	F (1)	-7.2	-41
	F (2)	-7.1	-42
	K (1)	-7.7	-47
	K (2)	-7.5	-47

Baseline isotopic data from Barredo.